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Electron density-difference maps, used to study the changes that occur when 
a molecule changes its state or when the nuclei of a molecule change their 
relative positions, are generally useful only if the atomic densities cancel 
when one molecular density distribution is subtracted from the other. When, 
as in the case of the nonrigid internal rotation in ethane, such a cancellation 
of atomic densities is not possible the method of simple subtraction is no 
longer appropriate. It is shown that useful density-difference maps can 
nevertheless be obtained, when the changes in geometric parameters are 
small, by the calculation of two generalized density-difference functions: a 
point difference function which allows a comparison of the densities at 
corresponding points in the two systems, and a volume difference function 
to compare the amounts of charge in corresponding regions. The method is 
illustrated by consideration of a change in bond length of the nitrogen 
molecule and by the nonrigid internal rotation in ethane. 
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1. Introduction 

A straightforward and appealing way of representing the results of quantum 
mechanical calculations of the electronic structure of molecules is obtained from 
contour maps of orbitals and of electron-density distributions, and from density- 
difference maps to demonstrate the changes that occur when a system changes 
its state or when the nuclei of a molecule change their relative positions, as in 
bond formation and conformation changes. Well-known examples are the orbital 
maps of Wahl [1], the total density maps for diatomic molecules of Bader and 
co-workers [2], the corresponding density-difference maps showing the changes 
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Fig. 1. Density-difference map for 
nitrogen molecule minus atoms. 
Zero contours are shown by dotted 
lines, positive contours by solid lines, 
negative contours by dashed lines. 
The contour values are 0, :i:0.001 • 
2nao3(n=0,1 ,2  . . . .  ). The posi- 
tions of nuclei in the plane are shown 
by crosses 

in total density that occur when two atoms come together to form a molecule 
[2], and the difference maps of Jorgensen and Allen [3] showing the changes 
that accompany the internal rotation in ethane. 

Typical electron density-difference maps for the nitrogen and ethane molecules 
are shown in Figs. 1 and 2. These, and all the maps discussed in this paper, have 
been obtained from SCF wave functions of "double-zeta" quality, calculated 
with the cusped-Gaussian basis [c +4s, 2p] for nitrogen [4] and [c +4s, 2p/2s] 
for ethane [5]. Fig. 1 shows the changes in total density that occur when two 
nitrogen atoms combine to form the stable molecule in its ground state. The 
density-difference map is obtained simply by subtracting the densities of the 
separate atoms from the molecular density, with the nuclei of the separate atoms 
coincident with the corresponding nuclei of the molecule. The small differences 
between Fig. 1 and the map calculated by Bader and co-workers [2] are mainly 
due to the absence of polarization functions from the basis used in the present 
work. Fig. 2 shows the changes in total electron density that accompany the 
rigid internal rotation of the ethane molecule from the eclipsed conformation 
to the staggered conformation. Fig. 2(a) is in a plane containing the C--C bond 
and two C--H bonds, the hydrogen on the left moving from the eclipsed position 
to the staggered position. Because the "atomic density" of this hydrogen does 
not cancel out, its presence tends to swamp the "molecular" effects on the 
left-hand side and, more important, in the C--C bond region. Fig. 2(b) is in the 
plane perpendicular to that in 2(a), and is perhaps the more informative since 
all the atomic densities have cancelled. It not only confirms the conclusions that 
can be drawn from 2(a) about the changes in the CH3 group [6], but also shows 
the molecular effects in the C--C bond region. 

The density-difference maps in Figs. 1 and 2 are usefol because of the complete 
or almost complete cancellation of atomic densities. In the case of the internal 
rotation in ethane this has been made possible by considering a rigid rotation 
only, in which the bond lengths Rcc and RcH and the bond angle/_HCH are 
the same in both conformations. Difficulties in the production of useful difference 
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Fig. 2. Rigid internal rotation in 
ethane. (a) Density-difference map 
for staggered ethane minus eclipsed 
ethane in a plane containing the 
C--C bond and two C--H bonds. 
(b) Map in the plane containing the 
C--C bond and perpendicular to (a). 
The contour values are 0, 
-4-0.00002 • 4"ao 3 (n = 0, 1, 2 . . . .  ) 
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maps  arise however  when such geometr ic  parameters  are different in the systems 
to be compared .  This is the case for  a non-rigid internal rota t ion in ethane.  A 
much simpler case is obtained,  for example,  f rom an investigation of the changes 
in bonding  that  accompany  the vibrations of a dia tomic molecule.  This requires 
taking the difference of the electron densities at two values of the b o n d  length. 
Fig. 3 shows the total  density of the ni t rogen molecule  at two values of the b o n d  
length, 2 .068a0 and 2.1a0. Fig. 4 shows the densi ty-difference maps  for  the 
process R = 2.1 ao--> 2 .068ao obta ined  by (a) super imposing the two centres and 
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(a) 

(b) 

Fig. 3. Total density for the nitrogen 
molecule in a plane containing 
the nuclei at internuclear distance 
(a) 2.068a0, (b) 2.1a0. The con- 
tour values are 0.02+0.04nao 3 
(n =0, 1,2 . . . .  ). 

(b) superimposing the left-hand nuclei. In 4(a) the displacements of the nuclei 
result in an incomplete cancellation of the atomic densities, and a misleading 
representat ion of the density-difference distribution everywhere outside the 
region around the centre of the bond. In 4(b) the coincidence of the left-hand 
nuclei results in a correct representat ion of the difference distribution on that 
side of the molecule. The two maps together do not however  provide a very 
informative picture of the changes. There  is a not too unexpected overall increase 
in electron density in the bond region as the bond length is decreased, and 4(b) 
shows that this increase is smaller near  the nuclei than at the centre of the bond, 
with even a hint of a slight decrease very close to the nuclei. However ,  more  
information about  how the charge is redistributed requires either some form of 
integration over suitable volumes or, as is shown in the following sections, the 
calculation of a new type of density-difference distribution that takes into account 
(small) changes in bond lengths and bond angles. 
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Fig. 4. Density-difference maps for 
nitrogen at R =2.068a0 minus 
nitrogen at R = 2 . 1 a o  with (a) 
molecular centres coincident, (b) 
left-hand nuclei coincident. The con- 
tour values are as in Fig. 2 

/ 
/ 

t ~ - "  

f , c - ,  
\ \  

\ 

/ "-< ! ~ - - .  \ ,  

#Z j \ \ ' 

I I ,~1 I / I 

~ : \  / / , 
" - ~ / /  i j / I 

I 

(b) 

2. General ized Densi ty-Dif ference  Functions 

Consider a system whose  geometry  (or that part of interest) can be specified by 
a finite number of reference points rl, r2 . . . .  , rN, which may be the posit ions of 
some  or all of the nuclei of a molecule  and possibly some  other convenient  
points. Let  P~(r) be a density function for this sytem. Consider also a second 
system with corresponding reference points sl ,  s2 . . . . .  sN and density function 
P2(s). A conventional  density-difference function is then obtained if a c o m m o n  
origin and c o m m o n  metric (a c o m m o n  coordinate system) can be chosen such 
that si = rl, i = 1 - ~ N :  

AP(r) = Pl(r)-PE(r). (1) 
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Two reference points, the positions of the nuclei, are used in Fig. 1, and four 
reference points, the positions of the nuclei in the plane for either conformation, 
are used in Fig. 2(a). 

The problems illustrated in Fig. 4 arise because the obvious sets of reference 
points, the positions of the nuclei in the two systems, cannot be brought into 
coincidence by any choice of common coordinate system. It is always possible 
however to find a coordinate transformation 

r = f ( s )  (2) 

which maps the points si, say, onto the points rl. Such a transformation is not 
unique of course, and not necessarily linear, the only requirement being that 

rl = f(&), i = 1 + N. Two types of transformation of the corresponding density 
function can usefully be considered. The first may be called a "point  transfor- 
mation",  

P~ (r) = e2(s) (3) 

the value of the transformed function P~ at point r being the value of the original 
density function P2 at point s. A "point density-difference" function is then 
defined as 

AP'(r) = P1 (r) - e~ (r) = Pl( r )  - P2(s). (4) 

The second type of transformation of the density function arises from a consider- 
ation of the integral of the density function over the whole space; for example, 
the total charge in the case of a charge distribution. The total value should be 
invariant under the transformation. Thus, if P~(r)  is a transformed density 
satisfying this requirement,  then, formally, 

I P2(s) dv ~ I p,, I p,, dv~ = 2 (r) dvr = 2 (r) ~ dye. (5) 

This is not generally true for P~ (r) = P2(s) unless dvr/dvs = 1, in which case we 
return to the case of a common coordinate system. The invariance of the total 
value is clearly satisfied if 

dvs (6) 
P~ (r) = P2(s) dvr" 

This may be called a "(relative) volume transformation",  and gives the second 
generalized density-difference function 

dvs 
AP"(r) = e l  (r) - P ~  (r) = P1 (r) -P2($)  dvr" (7) 

Both the density distributions (4) and (7) involve a mapping of the reference 
points of the second system onto those of the first. A more general procedure 
involves a mapping of both systems onto a third. Given a "standard" set of 
reference points f i l l ,  R 2  . . . . .  alan and the coordinate transformations 

R = f l (r )  = / 2 ( s )  (8) 
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such that 

R~ = h (r3 = f2(s,), i= 1--> N (9) 

the point density-difference function in "R-space"  is 

AP'(R) = fl(r) - f2(s)  (10) 

and the corresponding volume density-difference function is 

dr, dvs 
aP"(R)  = / l ( r )  ~ - f 2 ( s )  ~ .  (11) 

This more  general formulation can be used to avoid any bias towards either 
system. 

I t  is necessary now to specify the coordinate transformations (8), and for simplicity 
the one-dimensional  case is considered first. 

3. The One-Dimensional Case 

Consider a linear density function P(x) and the transformation X = f (x)  subject 
to the conditions Xi =f(xi) ,  i =  I ~ N ,  as illustrated in Fig. 5. The simplest 
coordinate t ransformation corresponds to a linear scaling in each interval i: 

(X,+~-Xi) X-X~ = (x -x~) 
(x~+l- xl) 

for xi < x < x~+l, i = 1 ~ N -  1. In the "end intervals" x < xl and x > xN it can be 
assumed that X - X~ = x - xi. 

The change in the bond length of the nitrogen molecule discussed in Section 1 
can be used as an example of the linear case. Fig. 6 shows the difference maps 
obtained by mapping both systems onto a reference structure with the mean 
bond length of 2.048ao. The point difference map in Fig. 6(a) exhibits all the 
important  features of the simple difference maps 4(a) and 4(b), the only noticeable 
discrepancies being very near to the nuclei within the bond region. The volume 
difference map in Fig. 6(b) on the other hand shows quite dramatically how the 
charge is redistributed as the bond is shortened, with a movement  of charge 

Fig. 5 
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Fig. 6. Generalized density- 
difference maps for nitrogen at R = 
2.068ao minus nitrogen at R =  
2.1ao. (a) Point density-difference. 
(b) Volume density-difference. The 
contours values are as in Figure 2 

away from the nuclei towards the centre of the molecule and into the regions 
behind the nuclei. There are some striking similarities between 6(b) and the 
bond-formation map in Fig. 1. Both show the characteristic two-way transfer of 
charge, which can be interpreted in terms of an increased participation of p~ 
atomic orbitals in the bonding, and a charge deficit on each nucleus reminiscent 
of a p= atomic density. These similarities suggest that the volume density- 
difference distribution provides a valid tool for the interpretation of changes in 
charge distributions when the conventional methods are inappropriate. 

4. The Three-Dimensional  Case 

If a volume density is expressed in terms of a set of orthogonal coordinates 
(xl, x2, x3) then the simplest general procedure is to transform each coordinate 
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separately, 

X~ =fdx,) 

and the discussion of the one-dimensional case then applies to each coordinate. 
Except in special cases of very high symmetry it is most convenient to work in 
cartesian coordinates, with one of the coordinate axes perpendicular to the plane 
of interest. 
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Fig. 7. Nonrigid internal rotation in 
ethane. Generalized density- 
difference maps for staggered minus 
eclipsed in a plane containing the 
C--C bond and two C--H bonds, as 
in Fig. 2(a). (a) Point density- 
difference. (b) Volume density- 
difference. The contour values are 
as in Fig. 2 
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The non-rigid internal rotation in ethane can be used as an example of the 
general case. The geometric parameters used are R c c  = 2.901ao, RcH = 2.051 a0, 
/ _ H C H =  107.8 ~ for the staggered conformation, and R c c = 2 . 9 2 9 a o ,  R c H =  
2.049ao, /_HCH = 107.4 ~ for the eclipsed. These values have been obtained by 
minimizing the total energy of each conformation, the optimum energies being 
- 7 9 . 2 1 6 4 6 E ~  and -79 .21207EH,  giving a barrier of 11.5 kJ mo1-1. Figs. 7 and 
8 show the density-difference maps, staggered minus eclipsed, obtained from a 
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Fig. 8. As in Fig. 7, but in the plane 
containing the C--C bond and per- 
pendicular to that in Fig. 7, as in Fig. 
2(b) 
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linear mapping onto the reference structure with mean parameter values Rcc = 
2.915ao, Rca = 2.050ao, Z_HCH= 107.6 ~ Fig. 7 shows the point and volume 
density-difference maps in a plane containing the C--C bond and two C--H 
bonds, as in Fig. 2(a), whilst Fig. 8 shows the maps in the plane perpendicular 
to this, as in Fig. 2(b). 

The differences between the point and volume distributions are much less striking 
than those observed for a simple change in bond length, with the volume 
distributions merely reinforcing the trends shown by the point distributions. The 
maps show that the relaxation of the nuclear structure results in a much greater 
reorganization of the electron distribution than in a rigid rotation (Fig. 2). Fig. 
8 in particular shows that the rotation from the eclipsed conformation to the 
more stable staggered conformation is accompanied by a two-way transfer of 
charge from each ell3 group, parallel to the principal axis of the molecule, which 
is qualitatively similar to that shown in Fig. 1 for bond formation. This is not 
observed for the rigid rotation, and suggests that a reinterpretation of the internal 
rotation in ethane may be necessary. This will be the subject of a subsequent 
paper. 

5. Discussion 

The work described in this paper represents an attempt to solve the problem of 
producing physically significant electron density-difference maps when the con- 
ventional method of simple subtraction is inappropriate. The use of the general- 
ized difference functions, introduced in Sect. 2, appears to be one way of achieving 
this, but the procedure is clearly open to criticism on a number of grounds. Most 
serious is the lack of uniqueness of the coordinate transformation required to 
map one (small) finite set of reference points onto another. It is suggested that 
the piecewise linear scaling method discussed in Sect. 3 is probably the least 
subjective transformation, and produces physically meaningful results, at least 
when the changes in geometric parameters are small. A very noticeable feature 
of this method however are the discontinuities in the volume difference distribu- 
tion resulting from the use of different scaling factors in the different intervals 
defined by the reference points. Although this is aesthetically displeasing, any 
method devised to avoid the discontinuities necessarily introduces a subjective 
element and greater arbitrariness into the method, and the author has not been 
able to find a satisfactory alternative. Finally, the use of cartesian coordinates 
in Sect. 3 results in a division of space into "intervals" that are rectangular 
parallelepipeds, and this may not always be the most appropriate choice. The 
method does not however rely on this choice of coordinates. 

Molecular density-difference maps are useful in general only if the atomic 
densities can be persuaded to cancel, in order that they do not swamp the small 
changes of interest. When this is not possible by the conventional method of 
simple subtraction then, despite the possible objections, the generalized 
difference functions appear to provide the only suitable alternative. The point 
difference function coupled with the linear scaling method allows a systematic 
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comparison of the densities at corresponding points in the two systems, whilst 
the volume difference function can be used to compare the amounts of charge 
in corresponding regions. 
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